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Regioselective synthesis of polysubstituted phenol derivatives
from Baylis–Hillman adducts via [3+3] annulation strategy
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Abstract—Polysubstituted phenol derivatives were synthesized from the acetates of Baylis–Hillman adducts and dimethyl 1,3-ace-
tonedicarboxylate (DMAD) in a one-pot reaction via the sequential SN2 0 reaction, aldol condensation, and 1,3-H shift process.
� 2006 Elsevier Ltd. All rights reserved.
Due to the importance of phenol derivatives in pharma-
cologically important molecules and their usefulness
as synthetic intermediates, much attention has been
focused on their synthesis.1–3 A variety of methods have
been examined including palladium-catalyzed enyne–
diyne cross-benzannulation,1b cycloaddition of Fischer
carbenes with alkynes,1c and stepwise construction
method of benzene ring of phenol by condensation as
the key reaction.1a,d,2

Recently, we reported the synthesis of polysubstituted
benzenes and pyridines starting from the Baylis–Hill-
man adducts.4a–c These valuable compounds were pre-
pared from the Baylis–Hillman acetate by the
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sequential SN20 reaction with tosylamide or primary nitro-
alkane, Michael addition, aldol condensation, elimina-
tion of TsH or HNO2, and the final aromatization pro-
cess (Scheme 1).4a–c In the reactions, the Baylis–Hillman
adducts served as 1,3-dielectrophilic components. In
order to make a six-membered ring compound, a
1,3-dinucleophilic component is needed. In the previous
two cases, the combinations of tosylamide/Michael
acceptor or primary nitroalkane/Michael acceptor
served the roles of 1,3-dinucleophilic components
(Scheme 1).

Thus, when we used certain 1,3-dinucleophilic reagents
we could make the six-membered ring directly via the
late; 1,3-Dinucleophile.
il: kimjn@chonnam.ac.kr
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[3+3] annulation strategy. As a suitable 1,3-dinucleo-
philic component, we chose dimethyl 1,3-acetonedicarb-
oxylate (2a)5 and tried the reaction with the Baylis–
Table 1. Synthesis of phenol derivatives 4a–h

Entry B–H acetate 1,3-Dinucleophil
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a Conditions: 1a–d (1.0 equiv), 2a–c (1.1 equiv), K2CO3 (1.1 equiv), DMF, 5
Hillman acetate 1a as shown in Scheme 2. To our
delight, the reaction of 1a and 2a in the presence of
K2CO3 (1.1 equiv) in DMF at 50–60 �C afforded the
e Producta (%)
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expected polysubstituted phenol derivative 4a directly in
49% yield.6 This compound 4a was definitively formed
via the sequential SN2 0, aldol-type cyclization, dehydra-
tion, keto-enol tautomerization, and 1,3-H shift pro-
cess.4a–c The use of other bases did not show better
yields (45% of 4a with Cs2CO3/DMF/50–60 �C, 29%
of 4a with TBAF/THF/reflux). We felt that this method
for the synthesis of polysubstituted phenols was interest-
ing and valuable although the yield was moderate when
we consider the simplicity of the reaction conditions
including one-pot reaction, easily available starting
materials, and mild conditions.

Encouraged by the successful results, we examined the
reactions with a variety of combinations, and the results
are summarized in Table 1. As shown in entries 2 and 3,
the reaction of 1a and diethyl 1,3-acetonedicarboxylate
(2b) and 1,5-diphenyl-1,3,5-triketone (2c) gave the corre-
sponding phenol derivatives 4b and 4c in 48% and 54%
yields, respectively. The modifications of the structure of
the Baylis–Hillman adducts (1a–d) did not change the
reaction progress and all the trials afforded similar
results as in entries 4–8.

As a next step, we tried the reaction of 1a and 1,3-di-
phenylacetone (2d). The use of the same conditions
(K2CO3, DMF) showed almost no reaction. When we
replaced the conditions to t-BuOK/THF we observed
the formation of many components on TLC. A mixture
1a O
Ph

Ph
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of diastereomeric aldol products were positioned at the
polar region, while the single component (3i, vide infra)
at the non-polar region (Scheme 3). When we subjected
the mixtures (after workup) under typical dehydration
conditions (p-TsOH, benzene, reflux), we found the con-
version of polar components (aldol mixtures) to the
non-polar component, which was found as the dehydra-
tion product 3i. We also found that the dehydration
compound 3i could be changed to the final phenol com-
pound 4i slowly by heating under the same conditions.
Similarly, we synthesized phenol 4j from the reaction
of 1d and 2d according to the same procedures. It is
interesting to note that 2,6-diarylphenol derivatives 4i
and 4j could be prepared by a two-step reaction in mod-
erate yields without the assistance of metal chemistry.7

Trials for the synthesis of phenol derivatives having an
alkyl group at the 4-position instead of the benzyl group
failed. When we examined the reaction of 2a and the
Baylis–Hillman acetate 1e, derived from hexanal and
MVK, we could not obtain the corresponding 4-hexyl-
phenol derivative at all (Scheme 4). The reaction showed
a very complex nature on TLC and we could isolate only
4k in small amounts (5%).8

In summary, we suggest the synthesis of polysubstituted
phenol derivatives from the reaction between the ace-
tates of the Baylis–Hillman adduct and some 1,3-di-
nucleophilic components including dimethyl 1,3-
O
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acetonedicarboxylate (DMAD) in a one-pot reaction via
the sequential SN2 0 reaction, aldol condensation, and
1,3-H shift process.
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131.75, 139.52, 142.23, 157.00, 167.55, 169.60; LC–MS
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12.09 (s, 1H, OH); 13C NMR (CDCl3, 75 MHz): d 17.03,
38.53, 116.79, 126.20, 128.22, 128.35, 128.49, 128.69,
129.05, 129.32, 130.02, 130.17, 131.93, 133.74, 134.91,
136.89, 137.38, 139.34, 143.46, 158.62, 197.08, 200.73.
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1736, 1678, 1439, 1246, 1207 cm�1; 1H NMR (CDCl3,
300 MHz): d 2.14 (s, 3H), 3.90 (s, 2H), 3.91 (s, 3H), 3.93 (s,
3H), 7.00 (d, J = 8.7 Hz, 2H), 7.22 (d, J = 8.7 Hz, 2H), 7.64
(s, 1H), 10.99 (s, 1H, OH); 13C NMR (CDCl3, 75 MHz):
d 17.07, 38.05, 52.32, 52.33, 110.24, 124.46, 128.50,
129.58 (2C), 131.71, 131.87, 137.94, 142.37, 157.05,
167.83, 169.85.
Compound 4e: 45%; white solid, mp 147–148 �C; IR (film)
3147, 2954, 1736, 1678, 1439, 1246,1203 cm�1; 1H NMR
(CDCl3, 300 MHz): d 2.16 (s, 3H), 2.31 (s, 3H), 3.90 (s, 2H),
3.92 (s, 3H), 3.93 (s, 3H), 6.95 (d, J = 8.1 Hz, 2H), 7.07 (d,
J = 8.1 Hz, 2H), 7.67 (s, 1H), 10.94 (s, 1H, OH); 13C NMR
(CDCl3, 75 MHz): d 17.20, 20.95, 38.42, 52.34, 52.41,
110.27, 124.40, 128.22, 129.19, 130.48, 131.87, 135.73,
136.45, 142.63, 156.99, 168.12, 170.08.
Compound 4f: 49%; colorless oil; IR (film) 3147, 2954,
1736, 1678, 1442, 1242, 1203 cm�1; 1H NMR (CDCl3,
300 MHz): d 1.08 (t, J = 7.5 Hz, 3H) 2.57 (q, J = 7.5 Hz,
2H), 3.88 (s, 3H), 3.93 (s, 3H), 3.97 (s, 2H), 7.06–7.29 (m,
5H), 7.66 (s, 1H), 10.95 (s, 1H, OH); 13C NMR (CDCl3,
75 MHz): d 14.62, 24.39, 37.79, 52.29 (2C), 110.42, 124.00,
126.17, 128.34, 128.44, 129.48, 132.56, 140.12, 148.20,
156.99, 168.06, 169.94; LC–MS m/z 328 (M+).
Compound 4g: 46%; colorless oil; IR (film) 3086, 2981,
1732, 1670, 1454, 1242 cm�1; 1H NMR (CDCl3, 300 MHz):
d 1.08 (t, J = 7.5 Hz, 3H), 1.36 (t, J = 7.0 Hz, 3H), 1.38 (t,
J = 7.0 Hz, 3H), 2.57 (q, J = 7.5 Hz, 2H), 3.98 (s, 2H), 4.35
(q, J = 7.0 Hz, 2H), 4.42 (q, J = 7.0 Hz, 2H), 7.07–7.29 (m,
5H), 7.66 (s, 1H), 11.00 (s, 1H, OH); 13C NMR (CDCl3,
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75 MHz) d 14.03, 14.12, 14.63, 24.26, 37.84, 61.34, 61.45,
110.68, 124.36, 126.12, 128.30, 128.39, 129.23, 132.48,
140.22, 147.92, 157.07, 167.58, 169.56; LC–MS m/z 356
(M+).
Compound 4h: 40%; colorless oil; IR (film) 3059, 2974,
1670, 1601, 1450, 1342, 1250 cm�1; 1H NMR (CDCl3,
300 MHz): d 1.03 (t, J = 7.5 Hz, 3H), 2.52 (q, J = 7.5 Hz,
2H), 3.98 (s, 2H), 7.09–7.94 (m, 16H), 12.05 (s, 1H, OH);
13C NMR (CDCl3, 75 MHz): d 14.71, 24.08, 37.61, 116.98,
126.29, 128.26, 128.57 (2C), 128.68, 129.14, 129.45, 129.63,
129.68, 131.98, 133.71, 135.81, 137.20, 137.45, 140.08,
149.34, 158.65, 196.93, 200.71.
Compound 4i: yellow solid, mp 125–127 �C; IR (film) 3537,
3028, 1604, 1493, 1458, 1408 cm�1; 1H NMR (CDCl3,
300 MHz): d 1.96 (s, 3H), 4.02 (s, 2H), 4.87 (s, 1H, OH)
7.14-7.58 (m, 16H); 13C NMR (CDCl3, 75 MHz): d 17.14,
39.50, 125.32, 125.88, 127.03, 127.95, 128.39 (2C), 128.62,
129.21, 129.27, 129.35, 130.40, 131.18, 131.32, 135.20,
136.31, 138.01,140.70, 148.13.
Compound 4j: white solid, mp 67–68 �C; IR (film) 3537,
2970, 1601, 1493, 1454, 1408 cm�1; 1H NMR (CDCl3,
300 MHz): d 0.87 (t, J = 7.2 Hz, 3H), 2.41 (q, J = 7.2 Hz,
2H), 4.05 (s, 2H), 4.77 (s, 1H, OH), 7.11–7.57 (m, 16H); 13C
NMR (CDCl3, 75 MHz): d 14.87, 23.38, 38.47, 125.43,
125.89, 126.97, 128.02, 128.32, 128.35, 128.66, 129.00,
129.09, 129.24, 130.41, 130.55, 131.98, 135.96, 138.00,
141.12, 141.33, 148.25.
Compound 4k: 5%; colorless oil; IR (film) 3169, 2955, 1737,
1678, 1441, 1244, 1203 cm�1; 1H NMR (CDCl3, 300 MHz):
d 0.93 (t, J = 7.2 Hz, 3H), 1.26–1.52 (m, 4H), 2.18–2.23 (m,
2H), 2.27 (s, 3H), 3.95 (s, 3H), 3.96 (s, 3H), 5.99 (dt,
J = 15.6 and 7.2 Hz, 1H), 6.43 (d, J = 15.6 Hz, 1H), 7.87 (s,
1H), 10.94 (s, 1H, OH); 13C NMR (CDCl3, 75 MHz): d
13.93, 17.34, 22.25, 31.49, 32.86, 52.39, 52.44, 110.55,
123.83, 126.04, 128.00, 129.79, 133.38, 140.56, 157.00,
168.10, 170.14.
Compound 3i: white solid, mp 117–120 �C; IR (film) 3028,
1666, 1493, 1442, 1261 cm�1; 1H NMR (CDCl3, 300 MHz):
d 2.08 (s, 3H), 3.29–3.45 (m, 2H), 3.87 (dd, J = 9.0 and
6.0 Hz, 1H), 7.10–7.40 (m, 16H); 13C NMR (CDCl3,
75 MHz): d 18.37, 33.63, 52.35, 126.89, 127.26, 127.59,
127.91, 128.08, 128.34, 128.45, 129.07, 129.95, 131.94,
135.91, 136.59, 136.70, 138.26, 138.89, 150.34, 97.28.
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8. Compound 4k might be generated via the air oxidation
during the corresponding intermediate stage. As we and
others reported the major pathway might be the formation
of cyclohexene derivatives, which could be formed by the
elimination of acetic acid from 1e and concomitant Diels–
Alder reaction.4g,h
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